

Presented By
City of Buford

Our Mission Continues

We are proud to present once again our annual water quality report covering all testing performed between January 1 and December 31, 2014. Most notably, last year marked the 40th anniversary of the Safe Drinking Water Act (SDWA). This rule was created to protect public health by regulating the nation's drinking water supply. We celebrate this milestone as we continue to manage our water system with a mission to deliver the best-quality drinking water. By striving to meet the requirements of SDWA, we are ensuring a future of healthy, clean drinking water for years to come.

Please let us know if you ever have any questions or concerns about your water.

Community Participation

The Buford City Commissioners meet the first Monday of every month at 7 p.m. in the Commissioners Chambers at Buford City Hall. Your questions and concerns can be heard after the regular scheduled meetings. For more information, call Buford City Hall at (770) 945-6761 Monday through Friday 9 a.m. to 5 p.m.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised people such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of

appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Information on the Internet

The U.S. EPA Office of Water (www.epa.gov/watrhome) and the Centers for Disease Control and Prevention (http://www.cdc.gov/healthywater/drinking/) Web sites provide a substantial amount of information on many issues relating to water resources, water conservation, and public health. Also, the Georgia Environmental Protection Division has a Web site (www.conservewatergeorgia.net) that provides complete and current information on water issues in Georgia, including valuable information about our watershed.

Tap vs. Bottled

Thanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about 25 percent of bottled water is actually just bottled tap water (40 percent, according to government estimates).

The Food and Drug Administration is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Furthermore, the FDA completely exempts bottled water that's packaged and sold within the same state, which accounts for about 70 percent of all bottled water sold in the United States.

People spend 10,000 times more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to \$1,400 annually. The same amount of tap water would cost about 49 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you'd pay for bottled water.

For a detailed discussion on the NRDC study results, check out their Web site at www.nrdc. org/water/drinking/bw/exesum.asp.

Where Does My Water Come From?

The City of Buford receives its water supply from Lake Sidney Lanier, located just north of Buford.

We also purchase a portion of our water from the Gwinnett County Water Plant. Lake Lanier is formed by the Buford Dam, which holds the Chattahoochee and Chestatee rivers flowing from northern Georgia. Lake Lanier is the most visited Corps of Engineers' project in the country. Lake Lanier is a key element in terms of water supply: More than 60% of Georgia's population receives drinking water from the Chattahoochee system. Lake Lanier's watershed is composed of more than 1,000 square miles in 10 Georgia counties. The watershed contains heavily forested areas, with agriculture being the largest activity. Lake Lanier is very low in point source and urban runoff pollutants. The Buford Waterworks was built in 1934 to filter 500,000 gallons of drinking water per day. In 1965, it was expanded to 1 million gallons per day. In 1994, the plant was high

QUESTIONS?

rated to 2 million gallons per

day. We plan to grow with the

future needs of our citizens.

For more information about this report, or for any questions relating to your drinking water, please call Cory Burge, Water Plant Superintendent, at (770) 932-7986.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Source Water Assessment

A source water assessment was conducted for the City of Buford in accordance with Georgia's Source Water Assessment and Protection Implementation Plan for Public Drinking Water Sources (2000). The assessment was completed through the Georgia Mountains Regional Development Center (GMRDC) as part of a larger source water assessment plan (SWAP) for the Lake Lanier Basin. The Lanier SWAP was managed with the overall goal of identifying potential risks that may affect the integrity of surface drinking water sources in the basin. Separate assessments were conducted for 13 existing and new municipal surface water intakes, and separate SWAP reports were produced for the nine individual water systems.

The source water assessment area for the City of Buford includes an inner management zone (IMZ) and an outer management zone (OMZ). The IMZ includes the entire subwatershed around Big Creek Cove, areas within a one-half-mile buffer all the way around the lake, and all areas within a seven-mile radius from the intake. The OMZ upstream of the intake includes all areas from the inner management zone plus the seven-mile radius from the intake. Several suburbs and urban areas are located within the City of Buford's IMZ and OMZ. Therefore, the types of point source potential contaminant sources (PCS) identified are somewhat varied and include mostly gas stations, auto repair shops, marinas, and boat repair shops. Most point source PCS ranked low, and the overall point source susceptibility rating for the intake is low. Of the PCS types that ranked high, the most common were marinas and gas stations. The marinas all ranked high; however, gas stations more often ranked low or medium priority. The high ranking for gas stations resulted from a particular station's location in relation to water or to the intake. The overall nonpoint susceptibility rating for the intake is medium. The majority of the nonpoint-source PCS ranked medium, with several ranked as high priority. Nonpoint-source PCS types receiving a high rating were secondary road crossings or those near streams; sewer systems with a history of spills; septic systems; and urban land use. The watershed vulnerability rating for the Buford intake is low due to watershed size and lake size. Likewise, both the point and nonpoint source PCS/vulnerability analysis resulted in a low priority ranking.

A copy of Buford's source water assessment plan is available for inspection at Buford City Hall, Monday through Friday 9 a.m. to 5 p.m. Visit the Georgia Mountains Regional Development Center's website for more information, www.gmrc.ga.gov.

What Causes the Pink Stain on Bathroom Fixtures?

The reddish-pink color frequently noted in bathrooms on shower stalls, tubs, tile, toilets, sinks, toothbrush holders, and on pets' water bowls is caused by the growth of the bacterium *Serratia marcesens*. Serratia is commonly isolated from soil, water, plants, insects, and vertebrates (including man). The bacteria can be introduced into the house through any of the above-mentioned sources. The bathroom provides a perfect environment (moist and warm) for bacteria to thrive.

The best solution to this problem is to continually clean and dry the involved surfaces to keep them free from bacteria. Chlorine-based compounds work best, but keep in mind that abrasive cleaners may scratch fixtures, making them more susceptible to bacterial growth. Chlorine bleach can be used periodically to disinfect the toilet and help to eliminate the occurrence of the pink residue. Keeping bathtubs and sinks wiped down using a solution that contains chlorine will also help to minimize its occurrence. Serratia will not survive in chlorinated drinking water.

How Is My Water Treated and Purified?

The treatment process consists of a series of steps. First, raw water is drawn from Lake Lanier and sent to our reservoir. The water is then gravity fed into the plant, where lime, alum, polymer, and chlorine are added as the water passes through a static mixer.

The addition of these substances causes small particles to adhere to one another (called floc), making them heavy enough to settle into a basin from which sediment is removed. Chlorine is then added for disinfection. At this point, the water is filtered through layers of fine coal and silicate sand. As smaller, suspended particles are removed, turbidity disappears and clear water emerges. Chlorine is added again as a precaution against any bacteria that may still be present. (We carefully monitor the amount of chlorine, adding the lowest quantity necessary to protect the safety of your water without compromising taste.) Finally, lime (to adjust the final pH and alkalinity), fluoride (to prevent tooth decay), and a corrosion inhibitor (to protect distribution system pipes) are added before the water is pumped to sanitized underground reservoirs, water towers, and into your home or business.

Sampling Results

Turing the past year, we have taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants. The tables below show only those contaminants that were detected in the water. The state requires us to monitor for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES									
				Buford \	Buford Waterworks Gwinnett County				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chlorine (ppm)	2014	[4]	[2]	1.2	0.5-1.9	NA	0.48-2.15	No	Water additive used to control microbes
Fluoride (ppm)	2014	4	4	0.96	0.55–1.27	1.38	0.13–1.38	No	Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAAs]-Stage 2 (ppb)	2014	60	NA	18.3	14.1–23	21.1	9.6–35.3	No	By-product of drinking water disinfection
Nitrate + Nitrite (ppm)	2014	10	10	0.24	NA	0.43	0.40-0.43	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
TTHMs [Total Trihalomethanes]-Stage 2 (ppb)	2014	80	NA	35.4	18.7–46.8	36.8	7.9–85.4	No	By-product of drinking water disinfection
Total Coliform Bacteria (% positive samples)	2014	5% of monthly samples are positive	0	0	NA	0.71	NA	No	Naturally present in the environment
Total Organic Carbon (ppm)	2014	TT	NA	1.0	1.3-0.86	NA	NA	No	Naturally present in the environment
Turbidity¹ (NTU)	2014	TT	NA	0.080	0.020-0.080	0.610	NA	No	Soil runoff
Turbidity (Lowest monthly percent of samples meeting limit)	2014	TT	NA	100	NA	99.73	NA	No	Soil runoff
Tap water samples were collected for lead and copper analyses from sample sites throughout the community.									

Tan		collected for lead and o		annuale eller Abress	
ıar	araw sainmes vere	collecten for lean ann c	ennner anaivses irnm	Samnie Sites tornii	anniit the commilaity

			Buford Wat	erworks	Gwinnett C	County			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2013	1.3	1.3	0.077	0/20	0.70^{2}	O ²	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2013	15	0	2.5	0/20	17²	12	No	Corrosion of household plumbing systems; Erosion of natural deposits

UNREGULATED SUBSTANCES									
	Buford W	aterworks	Gwinnet	tt County					
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE			
Bromodichloromethane (ppb)	2014	2.8	NA	1.8	NA	By-product of drinking water disinfection			
Chlorodibromomethane (ppb)	2014	NA	NA	0.53	NA	By-product of drinking water disinfection			
Chloroform (ppb)	2014	9.7	NA	4.0	NA	By-product of drinking water disinfection			
Sodium (ppm)	2014	3.2	NA	NA	NA	Naturally occurring			

¹ Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

² Sampled in 2014.

Definitions AL (Action Level):

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (**Treatment Technique**): A required process intended to reduce the level of a contaminant in drinking water.